فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


نویسندگان: 

VASOU JOUYBARI M. | Ataie E. | Bastam M.

اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    52
  • شماره: 

    3
  • صفحات: 

    195-204
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    249
  • دانلود: 

    83
چکیده: 

Distributed Denial of Service (DDoS) attacks are among the primary concerns in internet security today. Machine Learning can be exploited to detect such attacks. In this paper, a multi-layer perceptron model is proposed and implemented using Deep machine Learning to distinguish between malicious and normal traffic based on their behavioral patterns. The proposed model is trained and tested using the CICDDoS2019 dataset. To remove irrelevant and redundant data from the dataset and increase Learning accuracy, feature selection is used to select and extract the most effective features that allow us to detect these attacks. Moreover, we use the grid search algorithm to acquire optimum values of the model’s hyperparameters among the parameters’ space. In addition, the sensitivity of accuracy of the model to variations of an input parameter is analyzed. Finally, the effectiveness of the presented model is validated in comparison with some state-of-the-art works.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 249

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 83 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

فیاضی حسین | شکفته یاسر

اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    13
  • شماره: 

    25
  • صفحات: 

    93-125
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    19
  • دانلود: 

    0
چکیده: 

In traditional speech processing, feature extraction and classification were conducted as separate steps. The advent of Deep neural networks has enabled methods that simultaneously model the relationship between acoustic and phonetic characteristics of speech while classifying it directly from the raw waveform. The first convolutional layer in these networks acts as a filter bank. To enhance interpretability and reduce the number of parameters, researchers have explored the use of parametric filters, with the SincNet architecture being a notable advancement. In SincNet's initial convolutional layer, rectangular bandpass filters are learned instead of fully trainable filters. This approach allows for modeling with fewer parameters, thereby improving the network's convergence speed and accuracy. Analyzing the learned filter bank also provides valuable insights into the model's performance. The reduction in parameters, along with increased accuracy and interpretability, has led to the adoption of various parametric filters and Deep architectures across diverse speech processing applications. This paper introduces different types of parametric filters and discusses their integration into various Deep architectures. Additionally, it examines the specific applications in speech processing where these filters have proven effective.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 19

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

درویش عباس | شامخی سینا

اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    52
  • شماره: 

    2
  • صفحات: 

    137-146
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    132
  • دانلود: 

    21
چکیده: 

Identification of the exact location of an exon in a DNA sequence is an important research area of bioinformatics. The main issues of the previous signal processing techniques are accuracy and robustness for the exact locating of exons. To address the mentioned issues, in this study, a method has been proposed based on Deep Learning. The proposed method includes a new preprocessing, a new mapping method, and a multi-scale modified and hybrid Deep neural network. The proposed preprocessing method enriches the network to accept and encode genes at any length in a new mapping method. The proposed multi-scale Deep neural network uses a combination of an embedding layer, a modified CNN, and an LSTM network. In this study, HMR195, BG570, and F56F11.4 datasets have been used to compare this work with previous studies. The accuracies of the proposed method have been 0.982, 0.966, and 0.965 on HMR195, BG570, and F56F11.4 databases, respectively. The results reveal the superiority and effectiveness of the proposed hybrid multi-scale CNN-LSTM network.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 132

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 21 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    7
  • شماره: 

    2
  • صفحات: 

    23-36
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    20
  • دانلود: 

    0
چکیده: 

A social network consists of individuals and the relationships between them, which often influence each other. This influence can propagate behaviors or ideas through the network, a phenomenon known as influence propagation. This concept is crucial in applications like advertising, marketing, and public health. The influence maximization (IM) problem aims to identify key individuals in a social network who, when influenced, can maximize the spread of a behavior or idea. Given the NP-hard nature of IM, non-exact algorithms, especially metaheuristics, are commonly used. However, traditional metaheuristics like the variable neighborhood search (VNS) struggle with large networks due to vast solution spaces. This paper introduces DQVNS (Deep Q-Learning Variable Neighborhood Search), which integrates VNS with Deep reinforcement Learning (DRL) to enhance neighborhood structure determination in VNS. By using DQVNS, we aim to achieve performance similar to population-based algorithms and utilize the information created step by step during the algorithm's execution. This adaptive approach helps the VNS algorithm choose the most suitable neighborhood structure for each situation and find better solutions for the IM problem. Our method significantly outperforms existing metaheuristics and IM-specific algorithms. DQVNS achieves a 63% improvement over population-based algorithms on various datasets. The results of implementation on different real-world social networks of varying sizes demonstrate the superiority of this algorithm compared to existing metaheuristic, IM-specific algorithms, and network-specific measures.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 20

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
عنوان: 
نویسندگان: 

WATKINS C.J.C.H. | DAYAN P.

نشریه: 

MACHINE Learning

اطلاعات دوره: 
  • سال: 

    1992
  • دوره: 

    -
  • شماره: 

    -
  • صفحات: 

    279-292
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    133
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 133

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    14
  • شماره: 

    3
  • صفحات: 

    482-502
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    33
  • دانلود: 

    0
چکیده: 

مقدمه: عملکردهای شناختی نقش حیاتی در عملکرد بسیاری از وظایف بازی می کنند؛ بنابراین اختلال موقت در عملکرد شناختی و ذهنی می تواند منجر به عواقب جدی گردد، به ویژه هنگامی که پاسخ دقیق و فوری نیاز است. یکی از مؤثرترین عوامل برون زاد تأثیرگذار بر مکانیسم پردازشی مغز، توجه و زمان واکنش صدا است. بنابراین، این مطالعه طراحی گردید تا توجه پایدار متمرکز کارگران صنایع فولاد مواجهه یافته با ترازهای فشار صوت مختلف را بسنجد که درنتیجه راندمان و بهره وری کار افزایش خواهد یافت. روش کار: مطالعه در 4 مرحله کلی انجام شد که به ترتیب عبارتند از 1- انتخاب متغیرهای پیش بین جهت (سن، سابقه کار، ترازهای مختلف فشار صوت) 2- انجام آزمون عملکرد پیوسته1  (CPT) 3- انجام آزمون عملکرد شناختی N- BACK 4- مدل سازی تغییرات عملکرد شناختی بر اساس هر دو روش و تعیین نرخ خطا و صحت هر مدل.   یافته ها: نتایج آزمون عملکرد پیوسته نشان داد که خطای حذف، خطای ارتکابی و زمان پاسخگویی هر سه گروه تحت تأثیر زمان شیفت قرار می گیرند، هر سه مولفه به طور معنی داری در انتهای شیفت افزایش یافتند، به عبارتی عملکرد شناختی افراد کاهش یافت. همچنین تاثیر بالای صدا در مدلسازی های آزمون های CPT و N- Back بیانگر کاهش تمرکز و حواس پرتی کارگران ناشی از آن است. نتیجه گیری: نتایج این پژوهش نشان داد که با توجه به وزن بالای به دست آمده از صدا در مدلسازی های آزمون ها، در سه زمان ابتدا، وسط و انتهای شیفت بر مولفه های عملکرد پیوسته (CPT) و عملکرد حافظه کاری (n-back) از جمله زمان پاسخگویی و زمان واکنش کارگران اثر می گذارد و در طول شیفت میزان خطای کارگران افزایش و دقت آنها کاهش می یابد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 33

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
عنوان: 
اطلاعات دوره: 
  • سال: 

    0
  • دوره: 

    3
  • شماره: 

    (ویژه نامه 10)
  • صفحات: 

    57-58
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    694
  • دانلود: 

    0
چکیده: 

مقدمه: نظر به اینکه سیستم آموزشی فعلی جهت دانشجویان گروه پزشکی به نحوی است که دانشجویان بیشتر زمان آموزش خود را در چارچوب برنامه های رسمی محدود به شرایط تصنعی و کلاسیک طی می کنند، در نتیجه میزان رضایت از کیفیت آموزش به روش موجود و کاربرد آموخته ها در شرایط واقعی نیاز به بررسی و حتی تغییر در رویکرد حاضر دارد.مرور مطالعات: با مطالعه تاریخچه خدمات و آموزش جامعه نگر و جامعه محور در می یابیم که حدود یک قرن پیش به صورت Service Learning ارایه خدمات و آموزش به فراگیران همزمان در بستر جامعه انجام می پذیرفت. از اوایل 1900 تاکنون، آموزش دهندگان متوجه اهمیت ارتباط خدمات با اهداف آموزش شده اند و درطی قرن از 1960 تا 1970 در نتیجه S.L گذشته این مفهوم در آموزش جایگاه خود را حفظ کرده است. اغلب برنامه های فعالیت دانشجویان در جامعه در راستای اهداف آموزش توسعه یافت. این S.L اساس اعتقاد و مشابه نگرش ساختار گراهاست که معتقدند تولید و ساخت دانش در افراد از دانش و تجربیات پایه و مقدماتی شروع می شود بطرف فرایند یادگیری، تفسیر و بحث پیرامون اطلاعات جدید در زمینه اجتماع و محیط فردی پیش می رود. در حقیقت مفهوم یادگیری دو طرفه اساس و وجه تمایز تجربه ناشی از آموزش به روش دانشجویان به اهداف آموزشی دروس خود با مشارکت در برنامه های ارایه خدمت در شرایط واقعی دست می یابند و جامعه نیز مستقیما از آن بهره مند می شود. در این روش هم فراگیر و هم جامعه بهره مند می شوند. و فراگیران فعالانه به تولید محصول و خدمت مرتبط با اهداف آموزش می پردازند. با توسعه نگرشها، باورها و رفتارها در ارتباط با جامعه، شهروندانی مطلع و نیروی کار تولیدی تربیت می کنند. در این روش اساس کار دریافت باز خورد از جامعه و مدرسان است که به فراگیران فرصت می دهد دانش جدید خود را با دیگران مطرح کند و آموخته های خود را برای دیگران معنی دار کنند.بحث: در آموزش سنتی مردم بر خدماتی که دریافت میکنند، هیچ گونه کنترلی ندارند، فراگیران نیز قدرت مداخله و کاربرد آموخته های خود را ندارند ولی در این آموزش، تمام ابعاد نیازهای مردم دیده می شود و فراگیران با مشارکت مردم روی نیازها کار می کنند، مردم بر ارایه خدمات نظارت دراند. انریش می گوید: یادگیری فراگیران از طریق خواندن کتابهای قطور در اطاقهای در بسته ایجاد نمی شود، بلکه باید درهای پنجره ها را باز کرد و به دنبال تجربه بود. در نهایت به کمک SL فرصتی برای آزمون مسوولیت پذیری، تبدیل شدن به یک شهروند خوب را برای فراگیران در حین دستیابی به اهداف آموزش و ارایه خدمت به مردم ایجاد نماییم.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 694

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

نشریه: 

ELECTRONIC MARKETS

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    31
  • شماره: 

    3
  • صفحات: 

    685-695
تعامل: 
  • استنادات: 

    2
  • بازدید: 

    66
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 66

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Bhagwatrao G.R. | Lakshmanan R.

اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    38
  • شماره: 

    1
  • صفحات: 

    65-77
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    13
  • دانلود: 

    0
چکیده: 

This paper introduces a novel approach that adeptly navigates this trade-off, significantly enhancing the deployment efficiency of remote healthcare systems. The existing methodologies in remote healthcare networks typically face challenges in balancing robust security measures with the need for high-speed data transmission. This model meticulously selects from a pool of encryption methods — AES, RSA, ECC, DSA, Blowfish, TwoFish — and hashing methods — Argon2, SHA1, SHA256, SHA512, MD5, Bcrypt — to tailor a solution that upholds high security while enhancing speed. The rationale behind employing GCN lies in its ability to efficiently handle the complex, non-linear relationships among different encryption and hashing techniques, while Deep Dyna Q Learning dynamically adjusts hyperparameters to optimize for speed without compromising security.The results were compelling, showcasing an 8.5% improvement in energy efficiency, a 4.9% increase in speed, an 8.3% rise in throughput, a 5.9% enhancement in packet delivery ratio, and a 3.9% boost in communication consistency compared to existing methods. Notably, this enhanced performance was maintained even under various security threats, including Sybil, masquerading, spoofing, and spying attacks.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 13

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    20
  • شماره: 

    4
  • صفحات: 

    291-300
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    293
  • دانلود: 

    92
چکیده: 

محاسبات مه، حوزه تحقیقاتی نوظهوری برای ارائه خدمات محاسبات ابری به لبه های شبکه است. گره های مه جریان داده و درخواست های کاربر را در زمان واقعی پردازش می کنند. به منظور بهینه سازی بهره وری منابع و زمان پاسخ و افزایش سرعت و کارایی، وظایف باید به صورت متوازن بین گره های مه توزیع شوند، لذا در این مقاله، روشی جدید جهت بهبود توازن بار در محیط محاسبات مه پیشنهاد شده است. در الگوریتم پیشنهادی، هنگامی که وظیفه ای از طریق دستگاه های موبایل برای گره مه ارسال می شود، گره مه با استفاده از یادگیری تقویتی تصمیم می گیرد که آن وظیفه را خودش پردازش کند، یا این که پردازش آن را به یکی از گره های مه همسایه یا به ابر واگذار نماید. در بخش ارزیابی نشان داده شده که الگوریتم پیشنهادی با توزیع مناسب وظایف بین گره ها، تأخیر کمتری را برای اجرای وظایف نسبت به سایر روش های مقایسه شده به دست آورده است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 293

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 92 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button